Evolution of Space Dependent Growth in the Teleost Astyanax mexicanus
نویسندگان
چکیده
The relationship between growth rate and environmental space is an unresolved issue in teleosts. While it is known from aquaculture studies that stocking density has a negative relationship to growth, the underlying mechanisms have not been elucidated, primarily because the growth rate of populations rather than individual fish were the subject of all previous studies. Here we investigate this problem in the teleost Astyanax mexicanus, which consists of a sighted surface-dwelling form (surface fish) and several blind cave-dwelling (cavefish) forms. Surface fish and cavefish are distinguished by living in spatially contrasting environments and therefore are excellent models to study the effects of environmental size on growth. Multiple controlled growth experiments with individual fish raised in confined or unconfined spaces showed that environmental size has a major impact on growth rate in surface fish, a trait we have termed space dependent growth (SDG). In contrast, SDG has regressed to different degrees in the Pachón and Tinaja populations of cavefish. Mating experiments between surface and Pachón cavefish show that SDG is inherited as a dominant trait and is controlled by multiple genetic factors. Despite its regression in blind cavefish, SDG is not affected when sighted surface fish are raised in darkness, indicating that vision is not required to perceive and react to environmental space. Analysis of plasma cortisol levels showed that an elevation above basal levels occurred soon after surface fish were exposed to confined space. This initial cortisol peak was absent in Pachón cavefish, suggesting that the effects of confined space on growth may be mediated partly through a stress response. We conclude that Astyanax reacts to confined spaces by exhibiting SDG, which has a genetic component and shows evolutionary regression during adaptation of cavefish to confined environments.
منابع مشابه
Construction of bacterial artificial chromosome libraries for the Lake Malawi cichlid (Metriaclima zebra), and the blind cavefish (Astyanax mexicanus).
Teleost fishes have become important models for studying the evolution of the genetic mechanisms of development. A key resource for comparative genomics and positional cloning are large-insert libraries constructed in bacterial artificial chromosomes. We have constructed bacterial artificial chromosome libraries for two species of teleost fish that are important models for the study of developm...
متن کاملExpanded expression of Sonic Hedgehog in Astyanax cavefish: multiple consequences on forebrain development and evolution.
Ventral midline Sonic Hedgehog (Shh) signalling is crucial for growth and patterning of the embryonic forebrain. Here, we report how enhanced Shh midline signalling affects the evolution of telencephalic and diencephalic neuronal patterning in the blind cavefish Astyanax mexicanus, a teleost fish closely related to zebrafish. A comparison between cave- and surface-dwelling forms of Astyanax sho...
متن کاملTo see or not to see: evolution of eye degeneration in mexican blind cavefish.
The evolutionary mechanisms responsible for the loss of eyes in cave animals are still unresolved. Hypotheses invoking natural selection or neutral mutation have been advanced to explain eye regression. Here we describe comparative molecular and developmental studies in the teleost Astyanax mexicanus that shed new light on this problem. A. mexicanus is a single species consisting of a sighted s...
متن کاملThe cavefish genome reveals candidate genes for eye loss
Natural populations subjected to strong environmental selection pressures offer a window into the genetic underpinnings of evolutionary change. Cavefish populations, Astyanax mexicanus (Teleostei: Characiphysi), exhibit repeated, independent evolution for a variety of traits including eye degeneration, pigment loss, increased size and number of taste buds and mechanosensory organs, and shifts i...
متن کاملEvidence for multiple genetic forms with similar eyeless phenotypes in the blind cavefish, Astyanax mexicanus.
A diverse group of animals has adapted to caves and lost their eyes and pigmentation, but little is known about how these animals and their striking phenotypes have evolved. The teleost Astyanax mexicanus consists of an eyed epigean form (surface fish) and at least 29 different populations of eyeless hypogean forms (cavefish). Current alternative hypotheses suggest that adaptation to cave envir...
متن کامل